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Abstract

As part of the Detection of Chagas Disease from the
ECG: The George B. Moody PhysioNet Challenge 2025,
our team CompleXformers developed an interpretable
ECG-based approach to identify Chagasic cardiomyopa-
thy (CCM) from standard 12-lead ECGs. The method con-
structs a principal-component beat (PCB) through R-peak
alignment and singular-value decomposition, followed by
a wavelet-based entropy—complexity analysis using the
Daubechies-6 wavelet. From the relative wavelet energy
distribution, two biomarkers are computed: the normal-
ized Shannon entropy (H ) and the wavelet statistical com-
plexity (C), which together characterize morphological
and spectral variability in the PCB. These features are
used to train a Random-Forest classifier for binary CCM
detection.

Our approach achieved an official Challenge score of
0.119 (rank 36) on the hidden test set. Five-fold cross-
validation on the public training data confirmed stable en-
tropy—complexity patterns across folds, demonstrating low
sensitivity to alignment errors and noise. The proposed
pipeline emphasizes physiological interpretability, repro-
ducibility, and low computational cost, facilitating its inte-
gration into diagnostic workflows in resource-limited envi-
ronments.

1. Introduction

We participated in the 2025 George B. Moody Phys-
ioNet Challenge, which invited teams to develop open-
source algorithms for detecting Chagas disease from ECGs
[1,12]. The Challenge leveraged several large, annotated
ECG databases, including CODE-15, SaMi-Trop, PTB-
XL, REDS-II, and ELSA-Brasil [347].

Our team, CompleXformers, proposed an interpretable
ECG-based approach that prioritizes transparency and
physiological meaning over model complexity. Instead of
relying on deep learning, we characterize each subject by
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two wavelet-derived biomarkers—entropy (/) and com-
plexity (C)—computed from the relative wavelet energy of
a principal-component beat (PCB). These measures quan-
tify morphological disorder and temporal organization, of-
fering a compact representation of cardiac heterogeneity
associated with Chagasic cardiomyopathy (CCM).

This framework explores whether intrinsic wavelet en-
tropy—complexity signatures can distinguish CCM-related
electrical remodeling, aiming to provide clinically inter-
pretable biomarkers for low-resource diagnostic settings.

2. Methods

2.1. Challenge data and labeling

We used exclusively the official training datasets re-
leased for the 2025 George B. Moody PhysioNet Chal-
lenge [1,2]], namely CODE-15%, SaMi-Trop, and PTB-
XL (12-lead ECGs with harmonized metadata). Fol-
lowing the organizers’ labels, we framed a binary task:
CCM (confirmed Chagasic cardiomyopathy) vs. Non-
CCM (healthy/other cardiopathies). No external data
were introduced, and we did not relabel the training data.
Records were retained unless failing strict quality checks
(below).

2.2.  Signal conditioning and quality con-
trols

All ECG leads were resampled to fs = 1000 Hz to en-
able a homogeneous time—scale analysis around the QRS
complexes. A zero-phase band-pass filtered the signals in
the range of 0.5—40 Hz to mitigate baseline wander and
high-frequency noise; an adaptive notch at 50/60 Hz was
applied if narrowband interference was detected. Baseline
was estimated on decimated knots and removed by cubic-
spline interpolation [8]]. Brief artifacts (NaNs, saturated
samples, or flatlines) were corrected via linear interpo-
lation, whereas extended artifacts prompted exclusion of
the affected beats while preserving the remainder of the
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record. All code paths are deterministic with fixed seeds
and double-precision arithmetic. The full preprocessing
configuration is summarized in Table

Step Setting (units)

Resampling fs = 1000 Hz

Band-pass 0.5-40 Hz (zero-phase IIR)

Notch 50/60 Hz (adaptive)

Baseline Cubic-spline removal (decimated
knots)

NaNs / saturations / flatlines (beat-
level exclusion)
float64; fixed random seeds

Sanity checks

Precision

Table 1. Preprocessing settings. Parameters applied per
lead and per record before segmentation.

2.3. Beat detection, windowing, and align-
ment

R-peaks were detected per lead using adaptive thresh-
olds on the cleaned trace (NeuroKit2-style detector).
Around each R, we extracted a fixed window of duration
T, = 0.256s with 35% pre-R and 65% post-R to cover
QRS complexes and early ST. Initial alignment used cross-
correlation against a running-median template; residual jit-
ter was corrected with Woody’s iterative method. Beats
with normalized correlation < 0.85 to the template were
discarded to avoid smearing the dominant morphology. If
a lead lacked enough valid beats, we fell back to fixed,
non-aligned central windows to preserve pipeline continu-
1ty.

Let L be the number of valid leads and T the win-
dow length (samples). We build a matrix X € RIXT by
stacking aligned beat waveforms aggregated per lead with
trimmed means.

2.4. Principal-component beat

After column-centering X, we compute the SVD

X=UxV', UeRY"' veR™T ()

and define the Principal-component beat (PCB) as s(t) =
v1, the first right singular vector (dominant temporal
morphology). We monitor the explained-variance ratio
0%/>°, 07 to ensure a clear first mode. If SVD is ill-
conditioned or too few beats remain, we fall back to the
central window of the lead with maximal variance (deter-
ministic).

2.5. Continuous wavelet analysis and scale
energy

We apply the Continuous Wavelet Transform to the PCB
using a Daubechies-6 mother wavelet [8]. Sixteen analy-
sis scales {a; };6:1 are selected to span pseudo-frequencies

from approximately 31.3 Hz up to the Nyquist limit, em-
phasizing higher-frequency activity related to the steep
QRS slopes. For a sampling interval At = 1/ f;, pseudo-
frequencies map as f; ~ f./(a; At), where f. denotes the
db6 center frequency.

The CWT-like coefficients, defined for each scale a; and
time shift &, are

Cjk = \/lch /S(t)¢*<t(ljk> dt,

where k indexes the translation of the wavelet along time.
The per-scale energies E; = >, |c; x| define a normal-
ized distribution over scales,

E; J
J
Pi = 55716 5 >_pi=1,
Zm:l m Jj=1

which summarizes the relative energy contribution of each
scale (units: normalized units, n.u.). The 1/ Vaj factor
ensures the standard /5-norm energy normalization across
scales. This wavelet-energy formalism follows the early
definitions of wavelet entropy proposed by Rosso et al. [9}
10].

2.6. Wavelet entropy and statistical com-
plexity

Let p = (p1,p2,...,ps) " denote the scale—energy
probability vector, constrained to the J-dimensional prob-
ability simplex

J
P=qpeRG| ) p=1
=1

The normalized Shannon entropy is defined as

J
23:1 p;In(p;)

Ho) ===

The uniform reference distribution, representing the
barycentric point of P, is

T
11 1
e=(=,=, ..., =] €P.
P (J J J) &
The Jensen—Shannon divergence between two elements
p,q € Pis

IS(p,a) = H(P31) — 3H(p) — 3H(q).
The wavelet statistical complexity, defined over P, is

C(p) = Qo H(p) IS(p, pe),
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where the closed-form normalizer @y ensures C' € [0,1]
for J states:
-2

0= (Z)In(J +1) - 2In(2]) + InJ’

This formalism follows the statistical complexity frame-
work of Kowalski et al. [|11]] and its biomedical adaptation
by Valverde et al. [12]]. Variable definitions. p; (n.u.) is
the probability associated with the wavelet energy at scale
a;; H(p) quantifies the dispersion of energy across scales;
C(p) increases when this dispersion coexists with struc-
tured deviations from p., reflecting organized heterogene-
ity in the signal’s multiscale structure.

2.7.  Classifier, hyperparameters, and oper-
ating characteristics

A Random-Forest (RF) classifier receives the two-
dimensional feature vector (H, C'). Given the low feature
dimensionality and the goal of minimizing variance across
folds, a compact RF configuration was adopted with 12 es-
timators, a maximum of 34 leaf nodes, and a fixed random
seed of 56, without class reweighting. This setup provided
stable performance under small preprocessing variations
and avoided overfitting to dataset-specific artifacts.

2.8. Validation,
ducibility

robustness, and repro-

We conducted stratified 5-fold cross-validation on the
public training data with subject-wise grouping to avoid
patient leakage. Each fold executed the full pipeline (pre-
processing — detection/alignment — PCB — CWT —
(H,C) — RF) to assess stability and select qualitative
defaults (e.g., correlation threshold 0.85, J = 16). To
probe robustness, low-amplitude white noise (std = 0.01)
and temporal jitter of +0.004 s were injected before align-
ment; correlations of H and C with baseline values con-
firmed stability under perturbations. All randomness used
fixed seeds, and artifacts (model and configuration) were
reloaded prior to inference. The implementation avoids
GPU dependencies, achieving per-record run-times of a
few seconds on a standard laptop. Deterministic fallbacks
ensure feature extraction continuity in all cases, including
insufficient alignment or missing data.

3. Results

We summarize our results using both quantitative Chal-
lenge scores (Table and qualitative visualizations of
the extracted biomarkers (Figs. [TH2). Figure [I] shows
the scalogram of the principal-component beat (PCB)
computed with a db6 wavelet and J=16 scales, where

time—frequency localization highlights the dominant QRS
content and defines the scale-energy probabilities p.

- PCB

wavelet db6

Scale Frecuency
J (Hz)

16— 31.28
14— 42,61
12 — 49.71
10 — 59.65
8 — 74.56 02

6 — 99.41

Magnitude of the wavelet coefficients ¢;

4 —149.12

2__. 29824

Time (s)
Figure 1. Scalogram of the principal-component beat us-
ing db6 with J=16 scales. Axes: Time (s) and Frequency
(Hz); magnitude in arbitrary units. Scale energies define
the probability distribution p for (H, C') computation.

Figure [2] displays the distribution of records in the en-
tropy—complexity plane (H,C'), derived from the PCB
wavelet energy, with mean and standard-deviation mark-
ers summarizing inter-group variability.
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Figure 2. Entropy—complexity plane (H,C) (n.u.) com-
puted from PCB wavelet energies. Each point corresponds
to one record; summary markers indicate group means and
standard deviations (self-contained legend).

Finally, Table [2] presents the official Challenge 2025
scores obtained by our team, summarizing validation and
test performances across all datasets.
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Set Rank Val R-II SaMi ELSA Test
CompleXformers 36 0.187 0.149 0.116 0.093 0.119
Table 2. Official Challenge 2025 scores for team Com-
pleXformers. Val: REDS-II validation; R-II: REDS-II test;
SaMi: SaMi-Trop 3; ELSA: ELSA-Brasil; Test: overall

hidden test set.

4. Discussion and Conclusions

The proposed wavelet-based entropy—complexity pipeline
produced interpretable biomarkers of multiscale cardiac
dynamics in the Challenge 2025 datasets. Entropy (H)
rises with the dispersion of wavelet energy across scales,
whereas complexity (C) reflects organized departures from
uniformity. In the non-Chagasic group—comprising both
healthy and other cardiac conditions—higher H and lower
C indicate a more heterogeneous but less organized en-
ergy distribution. By contrast, Chagasic cardiomyopathy
shows more localized and structured energy concentration,
consistent with fibrosis-related conduction delays, yielding
lower H and higher C. Thus, (H,C) jointly capture the
balance between dispersion and organization in ventricu-
lar activation.

Compared with conventional feature sets or deep-
learning models, this approach is transparent, low-cost,
and robust, relying on only two descriptors from the
principal-component beat.  Although compact, it fa-
vors interpretability, reproducibility, and physiological in-
sight—key for translational and clinical use.

The method’s main strengths are its simplicity, deter-
ministic fallbacks, and resilience to moderate noise and
timing jitter, ensuring stable performance across cross-
validation folds. Future work will extend the analysis to
the first three principal components (PC1-PC3) to incor-
porate additional spatial information while preserving in-
terpretability.

The CompleXformers team achieved an official Chal-
lenge score of 0.119 (rank 36), with consistent stability
across validation and test sets. Overall, the method offers a
practical compromise between interpretability, physiologi-
cal coherence, and computational efficiency, supporting its
potential as a lightweight, explainable biomarker frame-
work for large-scale ECG screening.
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